A Cost-Benefit Assessment of Gasification-Based Biorefining at U.S. Kraft Pulp Mills

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

Ryan Katofsky Navigant Consulting, Inc.

- Project Background
- Technical Feasibility and Risks
- Competitive Advantage
- Project Overview
- History and Accomplishments
- Plan/Schedule
- Critical Issues and Show-stoppers
- Plans and Resources for Next Stage
- Summary

- Supports milestone M6.4.1: "Identify economically viable product(s) from syngas (evaluate technologies for mixed alcohols, DME and FTL)"
- Builds on 2003 black liquor gasification combined cycle (BLGCC) assessment
- DOE & industry need objective analysis of the business case for P&P biorefineries, to guide RD&D & commercialization.
- Project is developing detailed mass-energy balances, capital costs, financials and national cost-benefit estimates for pulp & paper biorefineries

Pathways and Milestones – C-level and Project Milestones

biomass program

Ag Residues

Perennial Grasses
Woody Crops

Pulp and Paper

Forest Products

M6.4.1: "Identify economically viable product(s) from syngas..."

Project Milestones	Туре	Performance Expectations	Due Date
Draft analytical Results (2 of 4 cases)	D	Detailed mass-energy balances and capital cost estimates and financial analysis	9/2005
Final Report D		Detailed mass-energy balances, capital cost estimates, financial analysis and full cost-benefit analysis	3/2006

Technical Feasibility and Risks

- Project is analytical in nature no direct technical risks
- Technology development issues are expected to be identified through this analytical work, e.g.,
 - FT economic requirements
 - Key integration issues (e.g., sulfur, lime cycle)
 - Deep sulfur cleaning for product synthesis
- General risks:
 - Bio-refinery represents a significant transformation for the P&P industry
 - Significant new technology adoption affecting core processes (e.g., chemical recovery)
 - New products, markets and partners will be required

Competitive Advantage

- Project will inform high-level industry decision-makers by providing the greatest level of detail yet on the economic viability of the P&P bio-refinery concept
 - Cost and performance targets needed to be competitive
 - Sensitivity of economic viability to key parameters (e.g., energy prices, capital costs)
 - R&D needs
 - Which products, gasifiers offer best economics and national benefits
- Risks for "Obsolescence":
 - Interest in bio-refinery may wax and wane with oil prices
 - Alternatives to gasification for BL recovery may continue to improve and therefore provide stiffer competition
 - Significant cost reductions in cellulosic ethanol (via fermentation) could also undermine the viability of the P&P bio-refinery based on the TC platform.

- Princeton University (Eric Larson)
 - Project lead
 - Capital cost estimating, mass-energy balances, overall integration
- Navigant Consulting (Ryan Katofsky)
 - Cost-benefit modeling, financial analysis, energy and environmental benefits
- Politecnico di Milano (Stefano Consonni)
 - Detailed mass-energy balances/system modeling
- Institute for Paper Science and Technology (Georgia Tech) (Jim Frederick, Kristiina Iisa)
 - Pulp mill integration issues
- Key Activities
 - Select four process configurations for detailed evaluation
 - Develop detailed mass-energy balances, including integration with P&P processes
 - Develop capital cost estimates
 - Conduct detailed financial analysis and cost-benefit analysis
 - Identify R&D needs and next steps

biomass program

Meetings to date

- Kickoff meeting held Princeton (Jan-05)
- First Steering Committee meeting held in DC (Mar-05)
- Second Steering Committee meeting held in Chicago (Jun-05)

Activities to date

- Developed screening criteria and ranked 12 configurations
- Selected 2 of 4 cases for initial evaluation (DME as product)
- Evaluated different pulping options
- Development of detailed mass-energy balances underway
- Cost-benefit model under development

biomass program

Screening Analysis

- Considered input from the DOE Value Added Products from BL Syngas process
- We ranked two configurations for each of six products.
- Products:
 - FT, DME, methanol, mixed alcohols, bio-ethanol, and H2
- Configurations:
 - BL gasification only
 - BL + biomass gasification ("maximum production")
- Each of the 12 configurations was scored on a 1-4-7-10 scale against each of the criteria
- The focus was not on absolute certainty in the data but on determining the relative rankings of the configurations.

Criteria and Relative Weights (**bold** denotes category weight)

Markets and Economics			
Market size of existing product (larger is better)			
Institutional partnerships required (business complexity)	8%		
Potential for long-term economic competitiveness (incl. high-value co- products, potential for lower costs than alternatives)			
Availability of near-term policy supports and regulatory drivers	12%		
Potential for new markets	7%		
	1		
Mill and Infrastructure Integration Issues			
Technology status (look at all pieces)	25%		
Need for/use of supplemental fossil fuels	5%		
Access to necessary infrastructure (transportation, refining, marketing)	15%		
Product compatibility with existing infrastructure	18%		
Ease of integration with the mill (energy, core process)	27%		
Potential for cost-savings at the mill (e.g., O2, pulping yields)	10%		
Societal Benefits	23%		
Reduce or eliminate dependence on foreign oil	46%		
Product toxicity/other environmental barriers of product			
Expected emissions benefits (lifecycle, including CO2)			

biomass program

Screening Analysis – For use as Transportation Fuel

biomass program

Steering Committee Decisions to Date

- Detailed cases for design/analysis should be consistent with previous BLGCC study to enable valid comparisons
- Two of four detailed cases decided:
 - Case 1: Maximize DME output from BL syngas.
 Use residues in boiler and buy electricity. Compare with BLGCC.
 - Case 2: DME with gasification of both BL and purchased residues; buy electricity (if needed). Likely better economics than case 1.
- Designs for final two cases under discussion

biomass program

High-temperature gasifier /small scale GT (from BLGCC Study)

biomass program

High Temperature BLG (HTBLG) with max DME production: overall plant configuration and simulated steam/power balance

biomass program

HTBLG with max DME production: Aspen model of Fuel Synthesis Island

biomass program

HTBLG-max DME vs Tomlinson: overall performance (1)

			Tomlinson	HTBLG
FUEL INPUT	Black liquor (DS)	kg/s	31.5	28.5
		MWt HHV	437.6	391.1
	Total Bark	MWt HHV	71.2	141.7
	from mill	MWt HHV	71.2	66.6
	purchased	MWt HHV	-	75.1
	Lime kiln fuel oil	MWt HHV	33.1	38.2
CLEAN SYNGAS	Mass flow	kg/s	-	13.7
	Power	MWt HHV	-	268.7
	H2/CO Ratio	mol/mol	-	1.05
FUEL PRODUCTION	Recyrculation flow of unconverted syngas	%	-	0.97
	Unconverted syngas to boiler	kg/s	-	7.0
		MWt HHV	-	36.2
	DME	kg/s	-	6.2
		MWt HHV	-	195.3
COOLING DUTY	Cleaning syngas	MWref	-	5.8
	cop		-	1.8
	DME condensation	Mwref	-	1.7
	cop		-	2.2
	DME distillation	MWref	-	2.4
	cop		-	2.8

biomass program

HTBLG-max DME vs Tomlinson: overall performances (2)

			Tomlinson	HTBLG
STEAM TO MILL	MP steam to mill	kg/s	35.2	32.9
		MWt	69.3	64.8
	LP steam to mill	kg/s	67.6	64.1
		MWt	142.8	135.3
POWER	Steam turbine gross output	MWel	72.0	28.3
	Syngas expander output	MWel	-	2.6
	Total gross production	MWel	72.0	30.8
	Aux for stream cycle	MWel	6.7	1.3
	Aux for bark boiler	MWel	1.0	1.7
	Aux for gasification island	MWel	-	2.7
	Compressor clean syngas	MWel	-	2.2
	Compressor recycle gas	MWel	-	8.8
	ASU	MWel	-	14.3
	Refrigeration plant cleaning gas	MWel	-	3.1
	Refrigeration plant DME separation	MWel	-	1.6
	Total use	MWel	7.7	35.7
	Net power production	MWel	64.3	-4.9
	Mill electricity consumption	MWel	100.1	100.1
	Power purchased from grid	MWel	35.8	105.0

biomass program

Summary

- Model and calculation algorithm of BLGF systems have been established and tested
- Plant configuration for HTBLG with max DME production (Case 1) has been specified and modeled
- Nearly final heat/mass balances for Case 1 are available to start cost assessment
- Results are in good agreement with results of European Altener/Nykomb DME study

Total Budget: \$747,000 (including \$195,000 cost share)

Phase I (9/04 - 6/05)

- Project startup
- Literature review
- Selection of detailed cases
- Develop modeling tools

Phase 2(6/05 - 3/06)

- Generate draft results
- Interim review meeting
- Revise analysis, write draft final report, and circulate for review
- Final review meeting
- Prepare final report

Critical Issues and Show-stoppers

- Analytical tools well developed
- Critical issues:
 - Obtaining sufficient information on developmental technologies to model effectively
 - Capital cost estimating for Nth plant designs
- Project team is getting input from paper industry, UOP, Shell, BP to assist with modeling
- No show-stoppers identified so far or expected.

Plans and Resources for Next Stage

biomass program

Not applicable

Summary/Comments

- Project is on schedule and on budget
- Industry stakeholders are actively engaged
- Earlier work (BLGCC) found good long-term business case for BL gasification, especially if environmental benefits can be internalized in the financials.
- Earlier BLGCC work also found that public benefits were large enough to justify government investment to reduce risk and accelerate commercialization of BL gasification systems.
 - If the biorefinery analysis shows similar or greater benefits, this reinforces the earlier study's conclusion
- There will be a clear need to continue to push for commercialization in the 2010 timeframe due to the window of opportunity presented by the recovery boiler replacement cycle.